A Generalization of the Rudin-Carleson Theorem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Rudin-carleson Theorem

The purpose of this paper is to prove a common generalization of a theorem due to T. W. Gamelin [3] and a theorem due to Z. Semadeni [5]. Both these results are generalizations of E. Bishop's abstract version of the well-known RudinCarleson theorem [2]. In the following X denotes a compact Hausdorff space, F a closed subset of X and C(A') and C(F) denote the spaces of all complex-valued functio...

متن کامل

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

A Variation Norm Carleson Theorem

By a standard approximation argument it follows that S[f ] may be meaningfully defined as a continuous function in ξ for almost every x whenever f ∈ L and the a priori bound of the theorem continues to hold for such functions. Theorem 1.1 is intimately related to almost everywhere convergence of partial Fourier sums for functions in L[0, 1]. Via a transference principle [12], it is indeed equiv...

متن کامل

On a Theorem of Rudin and Klee

Proof. Let 11 and V be countable bases for X and Y, respectively, and let 3 have as sub-base the collection of sets {fCC(X, Y) \f(U) C V), with UCM and VCÜ. Then 3 certainly has a countable base. Clearly 3 also makes (/, x)—>/(x) jointly continuous, and hence [l, p. 223] is finer than the compact-open topology. Finally, every subset of C(X, Y) is certainly Lindelöf and separable for the countab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1974

ISSN: 0002-9939

DOI: 10.2307/2038892